|
|||||||||||||
Она позволяет выявлять 45 видов неисправностей у всех типов подшипников с достоверностью 95-98%. При этом заменяется 24 различных устаревших устройства диагностики. Обеспечивается пооперационный контроль качества сборки - диагностика подшипников в роликовых отделениях, моторно-якорных подшипников - на испытательной станции, подшипников и редукторов колесно-моторных блоков - на стенде и в сборе под локомотивом или вагоном с определением остаточного ресурса. На сегодняшний день ОМСД внедрена в 38 локомотивных и 55 вагонных депо. В следующем году система будет задействована еще в 26 вагонных и 10 локомотивных депо. ОМСД является мощным инструментом для перехода на ремонт по фактическому состоянию экипажной части. Ее применение предусматривает три уровня мониторинга колесных пар:
На Горьковской и Дальневосточной дорогах при ДЦВ успешно действуют единые дорожные диагностические центры ЕДДЦ, куда в реальном времени поступают результаты вибродиагностики из каждого депо для объективного контроля качества и анализа. Перед формированием колесной пары системой проводится диагностика осей и колес на основе метода собственных частот. Эта система позволяет выявлять дефекты во всем объеме материала при минимальных затратах времени на контроль. Метод основан на анализе частотных спектров сигналов, получаемых при ударном воздействии на контролируемый объект. После формирования колесной пары до монтажа буксовых узлов она проходит проверку на соответствие геометрическим параметрам. Контроль проводится на стенде с помощью лазерных систем измерения. Наличие трещин в колесной паре проверяется методом ультразвукового контроля с использованием бесконтактных электромагнитоакустических (ЭМА) датчиков. Все это существенно упрощает технологию диагностики, повышает производительность и улучшает условия труда, а также не требует очистки поверхностей контролируемых изделий. Однако, система бесконтактного контроля не позволяет определять размер и дислокацию дефекта, а также степень его опасности для дальнейшей эксплуатации изделия, т.е. не может дать заключение об остаточном ресурсе объекта контроля. Поэтому колесная пара с обнаруженным дефектом подвергается уточненному контролю системой, основанной на методе ультразвуковой многоракурсной акустической голографии, позволяющей определить место дефекта в толще изделия, его характеристику (трещина, раковина, металлургические дефекты) и дать точные геометрические размеры (длина, глубина, площадь) дефекта. На основании полученных измерений в режиме текущего времени система производит расчет остаточного ресурса изделия. После монтажа буксовых узлов качество сборки и смазки проверяется на стенде с использованием виброакустической системы, что позволяет выявить дефекты подшипников и недостатки монтажа, отсутствие или плохое качество смазки. Проверенные исправные колесные пары устанавливают на тележку для бесконтактного измерения контролируемых базовых размеров с помощью лазерных излучателей.
На стенде производится приработка буксового узла тележки в сборе и оценка технического состояния буксовых узлов при температурном и вибродиагностическом выходном контроле в условиях имитации рабочих скоростей и нагрузочных режимов, бесконтактное (лазерное) измерение размеров тележки в сборе при ее выходном контроле из плановых видов ремонта (измерение базовых размеров тележки, завышения- занижения фрикционных клиньев, поперечных и продольных суммарных зазоров между корпусом буксы и боковой рамой). На этом стенде завершается цикл контроля ходовых частей вагона и дается окончательное заключение о возможности установки тележки под вагон. Для диагностики подшипников и колесных пар пассажирских вагонов при статическом мониторинге используются те же диагностические системы, которые применяются для диагностики грузовых вагонов, и дополнительно разработанные вибродиагностические системы для диагностики генераторов и редукторов привода генератора, а также комплексная система диагностики буксовых узлов колесных пар и генератора на катковой станции. Системы статического мониторинга для локомотивных депо включают вибродиагностический контроль подшипников в роликовых отделениях, тяговых электродвигателей на испытательной станции, колесно-моторных блоков на стенде и под локомотивом. В связи с повышением скоростей движения при одновременном старении подвижного состава сегодня становится важным проведение контроля технического состояния локомотивов и вагонов в процессе движения поезда. Мониторинг наиболее ответственных узлов при движении поезда является динамическим и предназначен для предотвращения аварий и крушений, а также для наблюдения за динамикой износа контролируемых узлов. В ОЦВ завершается разработка системы контроля работы буксового узла грузового вагона при движении поезда. Информация о дефектах в этой системе будет передаваться по радиоканалу машинисту и в диагностический центр. В стадии разработки находится комплексная система мониторинга пассажирского вагон в движении, включающая в себя системы контроля буксового узла, схода вагона, генератора, редуктора в средней части оси. Ведется также разработка постовой дискретной системы контроля механического состояния буксовых узлов грузовых и пассажирских вагонов при движении поезда для упреждения нагрева буксового узла. Кроме перечисленных систем динамического мониторинга при движении поезда, в ОЦВ разработаны дискретные системы контроля габарита подвижного состава, которые подразделяются на контролирующие боковой и верхний габарит и волочащиеся детали. В настоящее время разработана и проходит опытные испытания система определения схода грузового вагона, позволяющая в течение 5 сек зафиксировать сход и передать по радиоканалу сигнал машинисту поезда. Момент схода колеса с рельсов регистрируется электронным блоком, устанавливаемым на хребтовую балку вагона. В состав блока входит виброакустический датчик и радиопередатчик, с помощью которого сигнал «Тревога» передается в приемное устройство, установленное в кабине машиниста. Планируется завершение разработки бортовой системы вибродиагностики колесо-моторных блоков локомотивов. Эта система разрабатывается полностью на основе ОМСД. По заказу ОАО «РЖД» ОЦВ ведет разработку принципиально новых для железнодорожного транспорта технических средств и технологий бесконтактного дистанционного контроля и измерений состояния узлов экипажной части подвижного состава как при ремонте, так и во время движения. При этом используются такие прогрессивные и эффективные физические методы, как лазерное сканирование, объемная голография, электромагнитно-акустическое зондирование, электронная идентификация каждого элемента экипажной части и компьютерный пооперационный контроль качества сборочных операций всей технологической цепочки. Наиболее перспективным типом ультразвуковых преобразователей для контроля элементов колесных пар и других деталей ходовой части тележки являются электромагнитноакустические (ЭМА). Возникновение ультразвуковых колебаний происходит непосредственно в металле контролируемого изделия, где в локальном магнитном поле постоянного магнита возникает импульсное электромагнитное поле, создаваемое катушкой при подаче на нее импульса тока. Изменяя конфигурацию постоянного магнитного поля путем перемещения катушки относительно детали и подачи токов различной полярности, возбуждают различные типы ультразвуковых волн и меняют их направление. Среди особенностей данного типа преобразователей следует выделить возможность возбуждения и приема ультразвуковых волн без контактной жидкости с воздушным зазором до 1 мм, снижение требований к степени очистки поверхности деталей, проведение контроля по слою краски.
Решение проблем автоматизации процессов дефектоскопии и измерений позволит
создать автоматизированные многоуровневые системы управления качеством
сервисного обслуживания, эксплуатации и ремонта подвижного состава. В своей
работе ОЦВ тесно взаимодействует с дорожными центрами внедрения, которые за
последние годы окрепли количественно и качественно.
|
|||||||||||||
|